Sitemap   Contact   Home   Cas   中文
About Us
Research
News
International Cooperation
Institutes
Gallery
Contact
Links
Research Progress
Location: Home > Research > Research Progress
TEXT SIZE: A A A PRINTER CLOSE
Significant Progress Was Made in the Biosynthesis of Antitumor Natural Products by SIOC

 

Natural products, have always been one of the major sources of anticancer drugs. FR901464, an antitumor natural product, representing a new class of potent anticancer small molecules targeting spliceosome and inhibiting both splicing and nuclear retention of pre-mRNA, have drawn considerable interests for chemical synthesis, pharmaceutical development, and chemical biology. Recently, the researchers of State Key Laboratory of Bio-organic and Natural Product Chemistry at Shanghai Institute of Organic Chemistry, CAS, reported the biosynthetic gene cluster of FR901464, which revealed a complex polyketide synthase (PKS) system with several novel features (J. Am. Chem. Soc. 2011, 133, 2452-2462).

The FR901464 gene cluster was identified by degenerate primer PCR amplification of a gene encoding the 3-hydroxy-3-methylglutaryl-CoA synthase (HCS) postulated to be involved in the biosynthesis of a β-branched polyketide from Pseudomonas sp. No. 2663. This cluster consists of twenty open reading frames (ORFs) and was localized to 93-kb DNA segment, and its involvement in FR901464 biosynthesis was confirmed by gene inactivation and complementation. FR901464 is biosynthesized by a hybrid PKS/nonribosomal peptide synthetase (NRPS), HCS, and acyltransferases (AT)-less system. The PKS/NRPS modules feature unusual domain organization including multiple domain redundancy, inactivation, and tandem. Biochemical characterization of a glyceryl transferase and an acyl carrier protein (ACP) in the start module revealed that it incorporates D-1,3-bisphosphoglycerate, which is dephosphorylated and transferred to ACP as the starter unit. Furthermore, an oxidative Baeyer-Villiger reaction followed by chain release was postulated to form a pyran moiety. On the basis of in silico analysis and genetic and biochemical evidances, a biosynthetic pathway for FR901464 was proposed, which sets the stage to further investigate the complex PKS biochemically and engineer the biosynthetic machinery for the production of novel analogues.


Copyright © 1995-2009 Chinese Academy of Sciences,Shanghai Branch